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AUTOMATED MATERIAL CLASSIFICATION BASED 
ON TEMPERATURE PROFILES

This article presents a method for automated classification of materials based on the analysis 
of their temperature profiles. The use of laser thermography in combination with deep learning algorithms 
allows contactless material type recognition with high Accuracy. This is especially relevant for robotic systems 
that perform manipulation operations, automated quality control, and technical inspection without physical 
contact with the object.

A review of previous studies has shown that existing methods of material classification have certain limitations. 
Visual methods can be unreliable due to the dependence on lighting conditions and the similarity of the appearance 
of different materials. Contact methods provide high Accuracy, but they are challenging to implement and require 
physical interaction, which is not always appropriate in robotics. Therefore, the thermographic approach is 
promising, as it determines the type of material by its response to heating and cooling.

This paper describes an experimental system that uses a laser beam to heat the surface of an object, after which 
a thermal imager records the temperature change over time. The resulting temperature profiles are analysed 
using machine learning methods. The process of heat transfer for four types of materials (wood, plastic, steel, 
and aluminum) was simulated in COMSOL Multiphysics, which allowed us to form a training dataset.

Four neural network architectures were tested for temperature profile classification: Feedforward, LSTM, 
Bi-LSTM, and 1D-Convolutional. The Feedforward network demonstrated the best results, which achieved 
a correct answer rate of 76.6 %, although 1D-Convolutional showed better classification of certain materials. 
It was found that the temperature profiles of some materials have significant similarities, which complicates 
the classification, so further research should be aimed at expanding the training data set and optimising 
the model architecture.

The proposed approach has a wide range of applications in industry and robotics, requiring rapid 
identification of materials without physical contact. An automated system for classifying materials based 
on temperature profiles can increase the efficiency of technological processes, improve production safety, 
and expand the capabilities of autonomous robotic systems.

Key words: material classification, laser thermography, machine learning, neural networks.

Formulation of the problem. One of the key 
challenges in modern robotics is to ensure the reliable 
interaction of robotic systems with various objects 
without prior knowledge of their physical properties. 
Automated material type detection is critical for 
adaptive manipulators, autonomous maintenance 
systems, and robotic platforms operating in uncertain 

environments. For example, robotic grippers need 
to adjust their grip force depending on the object’s 
material, and automated quality control systems need 
to assess the material of products without physical 
contact. Traditional methods of material recognition, 
such as visual or acoustic, may not be reliable 
enough due to dependence on lighting conditions, 
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contamination, or similarity of appearance of different 
materials.

In a standard manipulation task, a robot must 
develop a grasping algorithm based on the physical 
properties of an object. Before making any physical 
contact with an object, it is important to determine 
the appropriate gripping forces for successful 
interaction. If the force applied is insufficient, the 
object may slip, while too much force may cause 
damage. One of the constant difficulties that arise 
from the lack of data on the types of materials in the 
environment is the lack of information on the weight 
and strength of unknown objects without physical 
contact. Thus, an urgent task is to find a method that 
will most effectively determine the type of material 
in an automated mode.

Consequently, there is a need for non-contact 
automated measurement of the physical properties of 
surrounding objects to improve the quality of robotic 
operations. The main difficulty lies in the fact that 
the surfaces of different materials may have similar 
textures, or, conversely, the same material may have 
different surfaces due to different manufacturing and 
processing methods. This study presents a promising 
approach that combines laser thermography and 
deep learning to implement an automated method for 
classifying materials by type.

Analysis of recent research and publications. 
Important information about the material properties 
can be obtained through direct physical contact 
between the measuring device and the object under 
test. This approach uses various diagnostic features 
of the object that occur during contact with it to 
recognise materials. These can include vibrations, 
contact forces, and thermal interactions.

Study [1] presents a haptic research method for 
recognising the material of an object’s surface using 
a specially designed finger. Touch sensors provide 
diverse and accurate data on material characteristics 
and properties. However, the size and complexity of 
the designs, limitations on non-contact measurements, 
and high development costs hinder the development 
of a mobile and straightforward contact device.

In a study [2], researchers developed a method for 
determining the surface friction coefficient in various 
environments to optimize the performance of a bipedal 
robot in motion planning tasks. Although physical 
contact with an object allows for high Accuracy in 
determining the types of materials, the high cost 
and complexity of the design make it difficult to use 
this method and create an effective mobile device. 
Therefore, using material classification methods that 
do not require physical contact with the object and are 

easy to implement looks promising. One such method 
is infrared thermography [3].

Most of the existing research in this area is aimed 
at analysing thermograms of surfaces made of various 
materials. Infrared images are more informative than 
similar images in the visible spectrum [4]. This allows 
for automated classification of materials with more 
excellent reliability. The authors of [5] argue that 
typical algorithms use color and texture information 
for classification, but there are problems due to 
different lighting conditions and a variety of colors 
in the same class of materials. At the same time, the 
results show that the proposed thermal method allows 
for better classification results than conventional 
visual features of color and texture.

The approach described above is often used in 
machine vision systems [6]. In modern thermography, 
artificial intelligence methods are used to automate 
the thermogram analysis. Paper [7] also discusses 
the use of deep learning, various applications of 
thermography, types of infrared cameras, and data 
presentation formats for analyzing thermographic 
data. The authors provide examples of case studies that 
combine thermography methods and deep learning 
on various platforms, such as UAVs, mobile phones, 
and embedded systems. In particular, they describe 
methods for processing thermogram sequences using 
neural networks. Such approaches can be applied to 
the tasks of classifying materials by their thermal 
properties.

The study [8] considers the possibility of using 
radiation in the infrared spectrum as a specific 
material property for its classification. The authors 
propose to classify materials by type with specific 
algorithm, combining data from optical and infrared 
sensors. The SVM method is used for classification. 
The results of testing on real data show a significant 
improvement in the reliability of material recognition.

In [9], the authors propose an approach to 
combining infrared thermography with machine 
learning. According to the described method, a 
laser source stimulates the surface of an object, 
while an infrared camera captures its thermal 
signature. Software algorithms find the features of 
these signatures and pass them on to a classification 
algorithm that is decision tree-based. This method has 
demonstrated an increase in classification reliability.

Task statement. The aim of the study is to develop 
and evaluate a method for automated classification of 
materials based on temperature profiles obtained by 
laser thermography using deep learning models.

Description of the thermographic method of 
material classification. Thermographic data can 



155

Інформатика, обчислювальна техніка та автоматизація

provide information about the material properties of 
an object of study by analysing how the temperature 
gradient on its surface changes over time and space. Heat 
propagation is described by the thermal conductivity 
equation, which includes a proportionality constant 
between the time derivative of the temperature and the 
spatial Laplace distribution. This constant is the thermal 
conductivity of a material, which reflects the ratio of 
its thermal conductivity to its volumetric heat capacity 
and indicates the ability of a material to conduct heat 
compared to its ability to store it. Different materials 
will heat and cool differently, which can be the basis 
for their automated classification.

The method of non-contact material type 
classification using thermography and machine 
learning can be described as follows: the object 
under study is heated using a laser source. A thermal 
imager records the heating and cooling of the object’s 
surface. As a result, a sequence of thermograms is 
obtained that reflects the change in the thermal field 
of the object’s surface over time. This sequence can 
be used to create a training data set.

To classify an object by type, one-dimensional 
temperature profiles in the pixels of the thermogram 
rather than two-dimensional images are sufficient to 
analyse. In other words, the diagnostic features will 
be formed based on the analysis of the nature of 
temperature changes at certain points on the object’s 
surface during the heating and cooling procedure. 
The resulting temperature profiles are transferred to 
a model machine learning for further classification. 
The output of such a model will be a class label to 
which the system has assigned the thermal profile. 
To increase the reliability of the classification, it 
is necessary to analyse temperature profiles from 
several different points on the object’s surface.

The scheme for implementing this approach is 
shown in Fig. 1. The flash controller control module 
instructs to generate a laser beam with the required 
duration and time waveform. The laser source 
heating, in turn, converts the electrical signal into a 
signal. A point actuator directs the generated optical 
signal to the sample. The actuator is controlled by 
the control module to perform heating at a precisely 

defined point. The thermal imager records a sequence 
of thermograms with a specified time interval between 
them. The data is sent to the module temperature 
profile, where classifications are analysed at the point 
heated by the laser. These profiles will differ for each 
type of material.

The temperature profiles of different materials 
can be very similar or overlap in some areas, which 
leads to a loss of reliability when using classical 
classification algorithms. For this reason, machine 
learning methods are recommended for automatic 
classification of temperature profiles. However, 
classical methods, such as decision trees or SVMs, 
have low noise immunity and do not perform well 
in time sequence analysis tasks, such as temperature 
profiles [10]. A more promising tool is deep learning 
methods – neural networks, which are widely used 
in data mining. The goal is to create a model that 
predicts the value of an object’s class label based on 
the analysis of temperature profiles.

Thus, the temperature profiles will serve as input 
data vectors for the classification model, which will 
provide labels of the corresponding material classes 
as output. The number of hidden layers and neurons 
in them is selected experimentally during training 
and depends on the complexity of a particular task 
(number of material classes, presence of noise, etc.). 
It should be noted that one of the disadvantages may 
be the need for a large amount of training data for 
effective model training.

Description of deep learning models. 
Historically, the architecture of neural networks 
(NN) for classification tasks has been the first and 
most studied, as well as feedforward networks. Such 
networks provide for signal propagation in only one 
direction: from input to output. In the architecture of 
feedforward NN, there are no feedback loops, i.e., the 
output values of any layer do not affect this layer. This 
type of network is usually widely used for pattern 
recognition and signal classification and is described 
in detail in [11].

The main disadvantage of these networks in the 
task of classifying temperature profiles is that they 
consider all elements of the input vector as separate 

Fig. 1. Scheme of implementation of the thermal method for determining the type of material
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and independent. However, temperature profiles are 
time sequences that reflect the nature of temperature 
change over time. Therefore, it is important to consider 
the relationships between measured temperature 
values within a temperature profile.

Long short-term memory (LSTM) is a type of 
recurrent neural network specially designed to work 
with data sequences and solve problems related 
to the loss of information in long sequences. The 
architecture of this class of networks is described in 
[12]. This architecture allows the model to store and 
use information for a long period of time, which makes 
it effective for tasks where the important context 
depends on a large number of previous elements of 
the sequence. Since the temperature profile is a time 
series that reflects the change in the temperature of 
an object’s surface over time, LSTM is a promising 
architecture for use in this task.

The LSTM architecture has a number of 
modifications. One of them is Bidirectional Long 
Short-Term Memory (Bi-LSTM), a modification 
specifically designed to work with data sequences 
and solve the problem of context loss in areas 
where both forward and backward information is 
important. Bi-LSTM allows you to use information 
in both directions in time, which increases its ability 
to model complex dependencies in sequences. A full 
description of this architecture can be found in [13]. 
Potentially, bi-directional analysis of temperature 
profiles can improve the quality of their classification.

Another modern deep learning model for 
classifying time sequences is 1-D Convolutional 
Neural Networks (1-D CNN). This class of models is 
a variant of convolutional neural networks designed 
to process one-dimensional data sequences, such 
as time series or text data. The main idea is to use 
convolutional networks to detect local patterns or 
features in the input sequences. A full description of 
the 1-D CNN architecture can be found in [14].

Simulation modelling. In order to generate a 
training data set and test the described method of 
automated classification of materials by type, we 
performed simulation modelling of the process of 
heating and cooling samples from different materials. 
The COMSOL Multiphysics environment was used 
for the simulation. Four materials were selected for 
the study: Wood (pine), Acrylic Plastic, Steel, and 
Aluminium.

The samples are typical objects of interaction 
in teleoperation manipulation tasks – small in size 
and made of solid rigid materials. Geometrically, the 
samples are rectangular parallelepipeds with a height 
and width of 100 mm and a variable thickness from 1 

to 30 mm. The thermophysical characteristics of each 
material were taken from the built-in COMSOL library.

To simulate the heating of samples, the COMSOL 
physics interface Heat Transfer in Solids is used. It 
is designed to simulate heat transfer by conduction, 
convection, and radiation. By default, the Solid model 
is active in all domains and will be used for solid 
materials. In all dimensions of space, steady-state, 
frequency domain, and time domain simulations 
are supported. Since we are modeling heating over 
a finite time interval, we will use time-domain 
modeling. The following modules were used in the 
heating simulation: Solid, Initial Values, Deposited 
Beam Power, Heat Flux

Solid. This module applies the heat equation to 
model heat transfer in solids:

,p p

T
C C u T q Q

t

∂
ρ + ρ ⋅∇ + ∇ ⋅ =

∂
 q = -k∇T, (1)

where ρ [kg/m3] is the density of the solid; Cp 
[J/(kg-K)] is the heat capacity of the solid at constant 
pressure; k [W/(m-K)] is the thermal conductivity of 
the solid; u [m/s] is the velocity field defined by the 
Translational Motion subnode (in the case when parts 
of the model move in the material frame); Q [W/m3] 
is the heat source.

Initial Values. This block sets the initial value 
for the temperature, which can be used as an initial 
condition for transient modelling. We set the standard 
value, which is approximately room temperature, to 
293.15 °K (20 °C). This setting is set for the entire 
sample body.

Deposited Beam Power. This module simulates 
a heat source that transfers energy to a given face 
through laser beams. The Beam orientation parameter 
is used to set the beam orientation e. In our case, the 
beam will be directed along the y-axis.

In the Beam profile section, parameters such as the 
value of the superimposed beam power P0 [W] and the 
coordinates of the beam start point O[m] are set. was set 
by the function P00.05 ⋅ step1(t), i. e. 50 mW per step1. 
Step 1, in turn, is a function of time, which changes 
from one to zero at 0.4 seconds in the time domain.

The beam distribution type Distribution type was 
selected as Gaussian. Thus, the sample is heated for 
0.4 seconds by a 50 mW laser beam with a Gaussian 
distribution:
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where s [m] is the standard deviation (in this study – 
0.3 mm paper).
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Heat Flux. This module is used to add heat flux 
through the faces of the sample. It applies to all faces. 
The Material type parameter indicates whether the 
input data is defined in material or spatial boundaries. 
The Solid option indicates that the heat flux q0 is 
defined in material boundaries. In the settings of the 
Heat Flux itself, Convective Heat Flux was selected, 
which is described by the equation:
 q0 = h ⋅ (Text - T ), (3)

where: 2
W

m K
 
  

h  – heat transfer coefficient; Text [K] – 

outdoor temperature; T [K] – object temperature.
The default option also allows you to enter a 

user-defined value for the heat transfer coefficient h 

2

Вт

м К
 
  

. In our case, it is equal to 5.

An example of the obtained distribution of the 
thermal field of the surface of a steel sample 30 mm 
thick before and after heating can be seen in Fig. 2.

Description of the training data set. Based on 
the results of the simulation, a dataset was created in 
the form of temperature profiles for the classification 
of four types of materials. The data set includes 
temperature profiles of samples of all ten thicknesses 
for each material. The temperature values were 
monitored at five different points on the sample 
surface for two seconds in 2-millisecond increments. 
Thus, each temperature profile vector consists 
of 100 elements. The measurement points were 
located in the centre of the laser beam imprint and 
in its vicinity. Graphs of all the obtained temperature 
profiles during fifty measurements for each material 
can be seen in Fig. 3.

In total, the modelling resulted in a dataset of 
200 samples, which was subsequently used to train 
neural networks. This volume is considered to be 
small, which makes training difficult. Also, based 
on the above graphs, we can conclude that many 
temperature profiles are of the same type, forming a 

certain lack of unique data, which can also negatively 
affect the efficiency of NN. In addition, we can 
observe that the indicators of wood with plastic and 
steel with aluminum are very similar, which further 
complicates the classification.

Model training. Most of the training parameters 
were the same for all models. Adam was chosen as 
the optimizer with a learning 0.00001 rate. The loss 
function was the standard for the classification of 
categorical cross-entropy. Accuracy was used as a 
metric criterion. The training dataset was used as a 
test set of 15 % of the samples.

The models were trained using the Keras 
framework. The architecture of the models was 
chosen experimentally. The best results were obtained 
with the architectures shown in Table 1.

The number of samples in the training dataset was 
relatively small. Therefore, many epochs had to be 
used to train the models efficiently. Information about 
the number of hyperparameters of the implemented 
models, the number of training epochs, and the 
training results obtained on the test set is given in 
Table 2.

Discussion. As can be seen from Table 2, the 
highest percentage of correct answers was achieved 
in the Feedforward network. Compared to the other 
architectures, it also has the minimum number of 
epochs, which has a positive effect on the time required 
for its training. On the other hand, a large number of 
parameters reduces the model’s performance.

The LSTM architecture has a slightly larger 
number of epochs than the other networks but a 
significantly smaller number of parameters, which, in 
practice, will mean a shorter training time and faster 
performance than other networks. However, the 
smallest percentage of correct answers casts doubt on 
its effectiveness in this task.

The Bi-LSTM network to train took fewer epochs 
than the baseline LSTM. Together with a small 
number of parameters, the network will learn and 

Fig. 2. Thermal field of the surface of a steel sample: a – at the beginning of heating; 
b – at the end of measurement
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Table 1
Selected model architectures 

Feedforward LSTM Bi-LSTM 1-D Convolutional
Layers Output shape Layers Output shape Layers Output shape Layers Output shape

Input (100) Input (100,1) Input (100,1) Input (100,1)
Dense (800) LSTM (100,100) Bi-LSTM (100,200) Conv. 1D (97, 128)
Batch norm (800) Dropout (100,100) Bi-LSTM (40) Conv. 1D (95,64)
Dense (100) LSTM (30) Batch norm. (40) Max Pool (47, 64)
Batch norm (100) Dense (200) Dense (4) Conv. 1D (45,32)
Dropout (100) Batch norm. (200) – – Flatten (1440)
Dense (4) Dense 4 – – Dense (200)
– – – – – – Dense (4)

Table 2
Comparison of training results of the developed architectures

Network type Number of Parameters Number of Epochs Accuracy, %.
Feedforward 163,904 1000 76,6

LSTM 63,924 1500 70
Bi-LSTM 121,544 1000 73,3

1-D Convolutional 320,588 1000 73,3

Fig. 3. Combined graph of the obtained temperature profiles of the samples

work quickly. The percentage of correct answers is 
not the best, but not the worst either.

The 1D-Convolutional network is similar to 
the Bi-LSTM network in its results – it also trains 
for the same number of epochs and shows the same 
percentage of correct answers. However, it has 
the largest number of parameters of all the created 

architectures, so compared to Bi-LSTM, it will be 
slower to learn and perform.

According to the Table 2, it can be concluded 
that the multilayer feedforward network was the 
most accurate of all developed ones. The relatively 
large number of parameters negatively affects its 
performance, but this is not a decisive criterion in 
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given a limited and monotonous training data set. In 
the future, attention should be paid to expanding the 
training dataset and optimising the chosen architecture 
of the deep learning model for classification.

Conclusions. Given the shortcomings of existing 
methods for determining the type of material, it is 
advisable to use thermography. The thermal method 
simplifies the classification, reduces the time required 
for its implementation, and is easier to automate. 
Since the pattern of heating and cooling a material 
creates a unique temperature profile that is specific to 
a particular type of material, it can serve as a reliable 
indicator for classification. The use of deep learning 
for automated temperature profiles can improve the 
Accuracy and efficiency of this process. Classification 
According to the results of training neural network 
models, the architectures considered in this paper 
showed a reliability of up to 76.6 %.

The proposed method can be used as part of 
robotic systems to solve the problem of determining 
the type of materials used in various industries and 
activities. An urgent task at the moment is to create 
an expanded set of training data in order to increase 
the reliability of material classification under 
different conditions measurements. It also promises 
to combine the analysis of temperature profiles and 
the nature of visual changes in the thermal field of 
the surface of the object under study. Convolutional 
neural networks can be used for automated analysis 
of thermograms.

the task of automated classification of materials by 
type.

The metric Accuracy provides a general 
understanding of the quality of the model. However, 
for a deeper understanding, it is also important to 
analyze the proportion of correct answers in the 
network for each class separately. For this purpose, 
confusion is used matrices. An error matrix displays 
all false and correct answers of the network for each 
class. The error matrices for each of the created 
models are shown in Fig. 4.

In terms of overall Accuracy, 1-D Convolutional is 
inferior to the multilayer direct propagation network, 
but this model has the best performance in terms of the 
error matrix. Thus, the network recognized two of the 
four classes (aluminum and steel) correctly. The model 
also has the highest classification plastic accuracy rate. 
Therefore, the final decision on the choice of a model 
for automating the process of classifying materials 
by temperature profiles should be made, taking into 
account all the features of the task.

We can conclude that networks are of particular 
interest for further research are Feedforward and 
1-D Convolutional. The former has the best score 
accuracy, while the latter has the best error matrix. 
The training time of both networks is approximately 
the same. The 1-D Convolutional network has more 
parameters and takes up more memory space.

In general, all of the considered deep learning 
models demonstrate high classification accuracy rates, 

Fig. 4. Confusion matrices of models: a – Feedforward; b – LSTM; c – Bi-LSTM; d – 1-D Convolutional
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їхніх температурних профілів. Використання лазерної термографії в поєднанні з алгоритмами 
глибинного навчання дозволяє здійснювати безконтактне розпізнавання типу матеріалу з високою 
точністю. Це особливо актуально для робототехнічних систем, які виконують маніпуляційні операції, 
автоматизований контроль якості та технічну інспекцію без фізичного контакту з об’єктом.

Огляд попередніх досліджень показав, що існуючі методи класифікації матеріалів мають певні 
обмеження. Візуальні методи можуть бути ненадійними через залежність від умов освітлення 
та схожість зовнішнього вигляду різних матеріалів. Контактні методи забезпечують високу 
точність, але вони складні у реалізації та вимагають фізичної взаємодії, що не завжди є доцільним 
у робототехніці. Тому термографічний підхід є перспективним, оскільки дає змогу визначати тип 
матеріалу за його реакцією на нагрівання та охолодження.

У роботі описано експериментальну систему, яка використовує лазерний промінь для нагрівання 
поверхні об’єкта, після чого тепловізор реєструє зміну температури у часі. Отримані температурні 
профілі аналізуються за допомогою методів машинного навчання. Виконано моделювання процесу 
теплопередачі для чотирьох типів матеріалів (дерево, пластик, сталь, алюміній) у середовищі 
COMSOL Multiphysics, що дозволило сформувати навчальний набір даних.

Для класифікації температурних профілів протестовано чотири архітектури нейронних 
мереж: Feedforward, LSTM, Bi-LSTM та 1D-Convolutional. Найкращі результати продемонструвала 
Feedforward-мережа, яка досягла долі правильних відповідей на рівні 76,6 %. Встановлено, 
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що температурні профілі деяких матеріалів мають значну схожість, що ускладнює класифікацію, 
тому подальші дослідження мають бути спрямовані на розширення набору навчальних даних 
та оптимізацію архітектури моделей.

Запропонований підхід має широкий спектр застосувань у промисловості та робототехніці, 
де потрібна швидка ідентифікація матеріалів без фізичного контакту. Автоматизована система 
класифікації матеріалів на основі температурних профілів може підвищити ефективність 
технологічних процесів, покращити безпеку виробництва та розширити можливості автономних 
роботизованих комплексів.

Ключові слова: класифікація матеріалів, лазерна термографія, машинне навчання, нейронні 
мережі.


