IndpopmaTuKa, 06uKCII0BaIbHA TEXHiKA Ta aBTOMAaTH3aLlis

UDC 621.382:004.8
DOI https://doi.org/10.32782/2663-5941/2025.2.2/21

Momot A. S.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

Nakonechnyi M. V.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

Galagan R. M.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

Muraviov O. V.
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute”

AUTOMATED MATERIAL CLASSIFICATION BASED
ON TEMPERATURE PROFILES

This article presents a method for automated classification of materials based on the analysis
of their temperature profiles. The use of laser thermography in combination with deep learning algorithms
allows contactless material type recognition with high Accuracy. This is especially relevant for robotic systems
that perform manipulation operations, automated quality control, and technical inspection without physical
contact with the object.

A review of previous studies has shown that existing methods of material classification have certain limitations.
Visual methods can be unreliable due to the dependence on lighting conditions and the similarity of the appearance
of different materials. Contact methods provide high Accuracy, but they are challenging to implement and require
physical interaction, which is not always appropriate in robotics. Therefore, the thermographic approach is
promising, as it determines the type of material by its response to heating and cooling.

This paper describes an experimental system that uses a laser beam to heat the surface of an object, after which
a thermal imager records the temperature change over time. The resulting temperature profiles are analysed
using machine learning methods. The process of heat transfer for four types of materials (wood, plastic, steel,
and aluminum) was simulated in COMSOL Multiphysics, which allowed us to form a training dataset.

Four neural network architectures were tested for temperature profile classification: Feedforward, LSTM,
Bi-LSTM, and 1D-Convolutional. The Feedforward network demonstrated the best results, which achieved
a correct answer rate of 76.6 %, although 1D-Convolutional showed better classification of certain materials.
1t was found that the temperature profiles of some materials have significant similarities, which complicates
the classification, so further research should be aimed at expanding the training data set and optimising
the model architecture.

The proposed approach has a wide range of applications in industry and robotics, requiring rapid
identification of materials without physical contact. An automated system for classifying materials based
on temperature profiles can increase the efficiency of technological processes, improve production safety,
and expand the capabilities of autonomous robotic systems.

Key words: material classification, laser thermography, machine learning, neural networks.

Formulation of the problem. One of the key
challenges in modern robotics is to ensure the reliable
interaction of robotic systems with various objects
without prior knowledge of their physical properties.
Automated material type detection is critical for
adaptive manipulators, autonomous maintenance
systems, and robotic platforms operating in uncertain

environments. For example, robotic grippers need
to adjust their grip force depending on the object’s
material, and automated quality control systems need
to assess the material of products without physical
contact. Traditional methods of material recognition,
such as visual or acoustic, may not be reliable
enough due to dependence on lighting conditions,
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contamination, or similarity of appearance of different
materials.

In a standard manipulation task, a robot must
develop a grasping algorithm based on the physical
properties of an object. Before making any physical
contact with an object, it is important to determine
the appropriate gripping forces for successful
interaction. If the force applied is insufficient, the
object may slip, while too much force may cause
damage. One of the constant difficulties that arise
from the lack of data on the types of materials in the
environment is the lack of information on the weight
and strength of unknown objects without physical
contact. Thus, an urgent task is to find a method that
will most effectively determine the type of material
in an automated mode.

Consequently, there is a need for non-contact
automated measurement of the physical properties of
surrounding objects to improve the quality of robotic
operations. The main difficulty lies in the fact that
the surfaces of different materials may have similar
textures, or, conversely, the same material may have
different surfaces due to different manufacturing and
processing methods. This study presents a promising
approach that combines laser thermography and
deep learning to implement an automated method for
classifying materials by type.

Analysis of recent research and publications.
Important information about the material properties
can be obtained through direct physical contact
between the measuring device and the object under
test. This approach uses various diagnostic features
of the object that occur during contact with it to
recognise materials. These can include vibrations,
contact forces, and thermal interactions.

Study [1] presents a haptic research method for
recognising the material of an object’s surface using
a specially designed finger. Touch sensors provide
diverse and accurate data on material characteristics
and properties. However, the size and complexity of
the designs, limitations on non-contact measurements,
and high development costs hinder the development
of a mobile and straightforward contact device.

In a study [2], researchers developed a method for
determining the surface friction coefficient in various
environments to optimize the performance of a bipedal
robot in motion planning tasks. Although physical
contact with an object allows for high Accuracy in
determining the types of materials, the high cost
and complexity of the design make it difficult to use
this method and create an effective mobile device.
Therefore, using material classification methods that
do not require physical contact with the object and are
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easy to implement looks promising. One such method
is infrared thermography [3].

Most of the existing research in this area is aimed
at analysing thermograms of surfaces made of various
materials. Infrared images are more informative than
similar images in the visible spectrum [4]. This allows
for automated classification of materials with more
excellent reliability. The authors of [5] argue that
typical algorithms use color and texture information
for classification, but there are problems due to
different lighting conditions and a variety of colors
in the same class of materials. At the same time, the
results show that the proposed thermal method allows
for better classification results than conventional
visual features of color and texture.

The approach described above is often used in
machine vision systems [6]. In modern thermography,
artificial intelligence methods are used to automate
the thermogram analysis. Paper [7] also discusses
the use of deep learning, various applications of
thermography, types of infrared cameras, and data
presentation formats for analyzing thermographic
data. The authors provide examples of case studies that
combine thermography methods and deep learning
on various platforms, such as UAVs, mobile phones,
and embedded systems. In particular, they describe
methods for processing thermogram sequences using
neural networks. Such approaches can be applied to
the tasks of classifying materials by their thermal
properties.

The study [8] considers the possibility of using
radiation in the infrared spectrum as a specific
material property for its classification. The authors
propose to classify materials by type with specific
algorithm, combining data from optical and infrared
sensors. The SVM method is used for classification.
The results of testing on real data show a significant
improvement in the reliability of material recognition.

In [9], the authors propose an approach to
combining infrared thermography with machine
learning. According to the described method, a
laser source stimulates the surface of an object,
while an infrared camera captures its thermal
signature. Software algorithms find the features of
these signatures and pass them on to a classification
algorithm that is decision tree-based. This method has
demonstrated an increase in classification reliability.

Task statement. The aim of the study is to develop
and evaluate a method for automated classification of
materials based on temperature profiles obtained by
laser thermography using deep learning models.

Description of the thermographic method of
material classification. Thermographic data can
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provide information about the material properties of
an object of study by analysing how the temperature
gradientonits surface changes overtime and space. Heat
propagation is described by the thermal conductivity
equation, which includes a proportionality constant
between the time derivative of the temperature and the
spatial Laplace distribution. This constant is the thermal
conductivity of a material, which reflects the ratio of
its thermal conductivity to its volumetric heat capacity
and indicates the ability of a material to conduct heat
compared to its ability to store it. Different materials
will heat and cool differently, which can be the basis
for their automated classification.

The method of non-contact material type
classification using thermography and machine
learning can be described as follows: the object
under study is heated using a laser source. A thermal
imager records the heating and cooling of the object’s
surface. As a result, a sequence of thermograms is
obtained that reflects the change in the thermal field
of the object’s surface over time. This sequence can
be used to create a training data set.

To classify an object by type, one-dimensional
temperature profiles in the pixels of the thermogram
rather than two-dimensional images are sufficient to
analyse. In other words, the diagnostic features will
be formed based on the analysis of the nature of
temperature changes at certain points on the object’s
surface during the heating and cooling procedure.
The resulting temperature profiles are transferred to
a model machine learning for further classification.
The output of such a model will be a class label to
which the system has assigned the thermal profile.
To increase the reliability of the classification, it
is necessary to analyse temperature profiles from
several different points on the object’s surface.

The scheme for implementing this approach is
shown in Fig. 1. The flash controller control module
instructs to generate a laser beam with the required
duration and time waveform. The laser source
heating, in turn, converts the electrical signal into a
signal. A point actuator directs the generated optical
signal to the sample. The actuator is controlled by
the control module to perform heating at a precisely

defined point. The thermal imager records a sequence
of thermograms with a specified time interval between
them. The data is sent to the module temperature
profile, where classifications are analysed at the point
heated by the laser. These profiles will differ for each
type of material.

The temperature profiles of different materials
can be very similar or overlap in some areas, which
leads to a loss of reliability when using classical
classification algorithms. For this reason, machine
learning methods are recommended for automatic
classification of temperature profiles. However,
classical methods, such as decision trees or SVMs,
have low noise immunity and do not perform well
in time sequence analysis tasks, such as temperature
profiles [10]. A more promising tool is deep learning
methods — neural networks, which are widely used
in data mining. The goal is to create a model that
predicts the value of an object’s class label based on
the analysis of temperature profiles.

Thus, the temperature profiles will serve as input
data vectors for the classification model, which will
provide labels of the corresponding material classes
as output. The number of hidden layers and neurons
in them is selected experimentally during training
and depends on the complexity of a particular task
(number of material classes, presence of noise, etc.).
It should be noted that one of the disadvantages may
be the need for a large amount of training data for
effective model training.

Description of deep learning models.
Historically, the architecture of neural networks
(NN) for classification tasks has been the first and
most studied, as well as feedforward networks. Such
networks provide for signal propagation in only one
direction: from input to output. In the architecture of
feedforward NN, there are no feedback loops, i.e., the
output values of any layer do not affect this layer. This
type of network is usually widely used for pattern
recognition and signal classification and is described
in detail in [11].

The main disadvantage of these networks in the
task of classifying temperature profiles is that they
consider all elements of the input vector as separate
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Fig. 1. Scheme of implementation of the thermal method for determining the type of material
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and independent. However, temperature profiles are
time sequences that reflect the nature of temperature
change over time. Therefore, it is important to consider
the relationships between measured temperature
values within a temperature profile.

Long short-term memory (LSTM) is a type of
recurrent neural network specially designed to work
with data sequences and solve problems related
to the loss of information in long sequences. The
architecture of this class of networks is described in
[12]. This architecture allows the model to store and
use information for a long period of time, which makes
it effective for tasks where the important context
depends on a large number of previous elements of
the sequence. Since the temperature profile is a time
series that reflects the change in the temperature of
an object’s surface over time, LSTM is a promising
architecture for use in this task.

The LSTM architecture has a number of
modifications. One of them is Bidirectional Long
Short-Term Memory (Bi-LSTM), a modification
specifically designed to work with data sequences
and solve the problem of context loss in areas
where both forward and backward information is
important. Bi-LSTM allows you to use information
in both directions in time, which increases its ability
to model complex dependencies in sequences. A full
description of this architecture can be found in [13].
Potentially, bi-directional analysis of temperature
profiles can improve the quality of their classification.

Another modern deep learning model for
classifying time sequences is 1-D Convolutional
Neural Networks (1-D CNN). This class of models is
a variant of convolutional neural networks designed
to process one-dimensional data sequences, such
as time series or text data. The main idea is to use
convolutional networks to detect local patterns or
features in the input sequences. A full description of
the 1-D CNN architecture can be found in [14].

Simulation modelling. In order to generate a
training data set and test the described method of
automated classification of materials by type, we
performed simulation modelling of the process of
heating and cooling samples from different materials.
The COMSOL Multiphysics environment was used
for the simulation. Four materials were selected for
the study: Wood (pine), Acrylic Plastic, Steel, and
Aluminium.

The samples are typical objects of interaction
in teleoperation manipulation tasks — small in size
and made of solid rigid materials. Geometrically, the
samples are rectangular parallelepipeds with a height
and width of 100 mm and a variable thickness from 1
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to 30 mm. The thermophysical characteristics of each
material were taken from the built-in COMSOL library.

To simulate the heating of samples, the COMSOL
physics interface Heat Transfer in Solids is used. It
is designed to simulate heat transfer by conduction,
convection, and radiation. By default, the Solid model
is active in all domains and will be used for solid
materials. In all dimensions of space, steady-state,
frequency domain, and time domain simulations
are supported. Since we are modeling heating over
a finite time interval, we will use time-domain
modeling. The following modules were used in the
heating simulation: Solid, Initial Values, Deposited
Beam Power, Heat Flux

Solid. This module applies the heat equation to
model heat transfer in solids:

oT
pCP5+pCpu-VT+V-q:Q,
q:_kVTa (1)

where p [kg/m’] is the density of the solid; C,
[J/(kg-K)] is the heat capacity of the solid at constant
pressure; k [W/(m-K)] is the thermal conductivity of
the solid; u [m/s] is the velocity field defined by the
Translational Motion subnode (in the case when parts
of the model move in the material frame); O [W/m’]
is the heat source.

Initial Values. This block sets the initial value
for the temperature, which can be used as an initial
condition for transient modelling. We set the standard
value, which is approximately room temperature, to
293.15 °K (20 °C). This setting is set for the entire
sample body.

Deposited Beam Power. This module simulates
a heat source that transfers energy to a given face
through laser beams. The Beam orientation parameter
is used to set the beam orientation e. In our case, the
beam will be directed along the y-axis.

In the Beam profile section, parameters such as the
value of the superimposed beam power P, [W] and the
coordinates of the beam start point O[m] are set. was set
by the function P,0.05 - step1(?), i.e. 50 mW per step].
Step 1, in turn, is a function of time, which changes
from one to zero at 0.4 seconds in the time domain.

The beam distribution type Distribution type was
selected as Gaussian. Thus, the sample is heated for
0.4 seconds by a 50 mW laser beam with a Gaussian

distribution:
1 d lexx-0)|
In0” e"pe"p[ zGZJ A= @

where ¢ [m] is the standard deviation (in this study —
0.3 mm paper).

f(0,e)=
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Heat Flux. This module is used to add heat flux
through the faces of the sample. It applies to all faces.
The Material type parameter indicates whether the
input data is defined in material or spatial boundaries.
The Solid option indicates that the heat flux ¢, is
defined in material boundaries. In the settings of the
Heat Flux itself, Convective Heat Flux was selected,
which is described by the equation:

QO:h'(sz_T)a

e.

3)

[K]-

ext

W .
where: 3 —heat transfer coefficient; 7,
m°K

outdoor temperature; 7 [K] — object temperature.
The default option also allows you to enter a
user-defined value for the heat transfer coefficient 4

[ Bt
MK
An example of the obtained distribution of the
thermal field of the surface of a steel sample 30 mm
thick before and after heating can be seen in Fig. 2.

Description of the training data set. Based on
the results of the simulation, a dataset was created in
the form of temperature profiles for the classification
of four types of materials. The data set includes
temperature profiles of samples of all ten thicknesses
for each material. The temperature values were
monitored at five different points on the sample
surface for two seconds in 2-millisecond increments.
Thus, each temperature profile vector consists
of 100 elements. The measurement points were
located in the centre of the laser beam imprint and
in its vicinity. Graphs of all the obtained temperature
profiles during fifty measurements for each material
can be seen in Fig. 3.

In total, the modelling resulted in a dataset of
200 samples, which was subsequently used to train
neural networks. This volume is considered to be
small, which makes training difficult. Also, based
on the above graphs, we can conclude that many
temperature profiles are of the same type, forming a

} . In our case, it is equal to 5.

a)

certain lack of unique data, which can also negatively
affect the efficiency of NN. In addition, we can
observe that the indicators of wood with plastic and
steel with aluminum are very similar, which further
complicates the classification.

Model training. Most of the training parameters
were the same for all models. Adam was chosen as
the optimizer with a learning 0.00001 rate. The loss
function was the standard for the classification of
categorical cross-entropy. Accuracy was used as a
metric criterion. The training dataset was used as a
test set of 15 % of the samples.

The models were trained using the Keras
framework. The architecture of the models was
chosen experimentally. The best results were obtained
with the architectures shown in Table 1.

The number of samples in the training dataset was
relatively small. Therefore, many epochs had to be
used to train the models efficiently. Information about
the number of hyperparameters of the implemented
models, the number of training epochs, and the
training results obtained on the test set is given in
Table 2.

Discussion. As can be seen from Table 2, the
highest percentage of correct answers was achieved
in the Feedforward network. Compared to the other
architectures, it also has the minimum number of
epochs, which has a positive effect on the time required
for its training. On the other hand, a large number of
parameters reduces the model’s performance.

The LSTM architecture has a slightly larger
number of epochs than the other networks but a
significantly smaller number of parameters, which, in
practice, will mean a shorter training time and faster
performance than other networks. However, the
smallest percentage of correct answers casts doubt on
its effectiveness in this task.

The Bi-LSTM network to train took fewer epochs
than the baseline LSTM. Together with a small
number of parameters, the network will learn and

b)

Fig. 2. Thermal field of the surface of a steel sample: a — at the beginning of heating;
b — at the end of measurement
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Fig. 3. Combined graph of the obtained temperature profiles of the samples
Table 1
Selected model architectures
Feedforward LSTM Bi-LSTM 1-D Convolutional
Layers Output shape Layers Output shape Layers Output shape Layers Output shape
Input (100) Input (100,1) Input (100,1) Input (100,1)
Dense (800) LSTM (100,100) |Bi-LSTM (100,200) |Conv. 1D (97, 128)
Batch norm (800) Dropout (100,100) |Bi-LSTM (40) Conv. 1D (95,64)
Dense (100) LSTM (30) Batch norm. (40) Max Pool (47, 64)
Batch norm (100) Dense (200) Dense 4) Conv. 1D (45,32)
Dropout (100) Batch norm. (200) — — Flatten (1440)
Dense 4) Dense 4 — — Dense (200)
- - - - - — Dense 4
Table 2
Comparison of training results of the developed architectures
Network type Number of Parameters Number of Epochs Accuracy, %.
Feedforward 163,904 1000 76,6
LSTM 63,924 1500 70
Bi-LSTM 121,544 1000 73,3
1-D Convolutional 320,588 1000 73,3

work quickly. The percentage of correct answers is
not the best, but not the worst either.

The 1D-Convolutional network is similar to
the Bi-LSTM network in its results — it also trains
for the same number of epochs and shows the same
percentage of correct answers. However, it has
the largest number of parameters of all the created
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architectures, so compared to Bi-LSTM, it will be
slower to learn and perform.

According to the Table 2, it can be concluded
that the multilayer feedforward network was the
most accurate of all developed ones. The relatively
large number of parameters negatively affects its
performance, but this is not a decisive criterion in
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Fig. 4. Confusion matrices of models: a — Feedforward; b — LSTM; ¢ — Bi-LSTM; d — 1-D Convolutional

the task of automated classification of materials by
type.

The metric Accuracy provides a general
understanding of the quality of the model. However,
for a deeper understanding, it is also important to
analyze the proportion of correct answers in the
network for each class separately. For this purpose,
confusion is used matrices. An error matrix displays
all false and correct answers of the network for each
class. The error matrices for each of the created
models are shown in Fig. 4.

In terms of overall Accuracy, 1-D Convolutional is
inferior to the multilayer direct propagation network,
but this model has the best performance in terms of the
error matrix. Thus, the network recognized two of the
four classes (aluminum and steel) correctly. The model
also has the highest classification plastic accuracy rate.
Therefore, the final decision on the choice of a model
for automating the process of classifying materials
by temperature profiles should be made, taking into
account all the features of the task.

We can conclude that networks are of particular
interest for further research are Feedforward and
1-D Convolutional. The former has the best score
accuracy, while the latter has the best error matrix.
The training time of both networks is approximately
the same. The 1-D Convolutional network has more
parameters and takes up more memory space.

In general, all of the considered deep learning
models demonstrate high classification accuracy rates,

given a limited and monotonous training data set. In
the future, attention should be paid to expanding the
training dataset and optimising the chosen architecture
of the deep learning model for classification.

Conclusions. Given the shortcomings of existing
methods for determining the type of material, it is
advisable to use thermography. The thermal method
simplifies the classification, reduces the time required
for its implementation, and is easier to automate.
Since the pattern of heating and cooling a material
creates a unique temperature profile that is specific to
a particular type of material, it can serve as a reliable
indicator for classification. The use of deep learning
for automated temperature profiles can improve the
Accuracy and efficiency of this process. Classification
According to the results of training neural network
models, the architectures considered in this paper
showed a reliability of up to 76.6 %.

The proposed method can be used as part of
robotic systems to solve the problem of determining
the type of materials used in various industries and
activities. An urgent task at the moment is to create
an expanded set of training data in order to increase
the reliability of material -classification under
different conditions measurements. It also promises
to combine the analysis of temperature profiles and
the nature of visual changes in the thermal field of
the surface of the object under study. Convolutional
neural networks can be used for automated analysis
of thermograms.
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KJACU®DIKALISA MATEPIAJIIB HA OCHOBI TEMIIEPATYPHUX TPO®IJIIB

Y cmammi npeocmasneno memoo asmomamuzosanoi Kiacughikayii mamepianié Ha OCHOBI aHALI3Y
ixHix memnepamypuux npoghinie. Bukopucmanns nazeproi mepmozpaghii 6 NOEOHAHHI 3 ANCOPUMMAMU
2NUOUHHO2O HABUAHHA 00380JA€ 30IUCHIOBAMU OE3KOHMAKMHe DO3NI3HABAHHA MUNY MAmepianry 3 8UCOKOIO
mounicmio. Lle ocobnuso akmyanvbHo 071 pOOOMOMEXHIUHUX CUCTEM, AKI BUKOHYIOMb MAHINYIAYINHI onepayii,
A8MOMAMU308AHUL KOHMPOJIb AKOCMI Ma MeXHIYHY iHCneKkyiio 0e3 izuunoeo KOoHmakmy 3 00 eKmom.

02510 nonepeoHix 00CniodNceHb NOKA3a8, W0 ICHYIOUl Memoou Kiacugixayii mamepianie maroms neswi
obmedxcents. Bizyanvni memoou mooicymes Oymu HeHaOIUHUMU Uepe3 3ANeHCHICHb 8i0 YMO8 OCBIMIeHHS
ma cxoxcicmv 308HIUHBO20 BU2NAJY pI3HUX mamepianie. Konmaxmui memoou 3a0e3neuyroms UCOKY
MOYHICMb, dlle 80HU CKIAOHI y peanizayii ma sumazaroms QizuyHoi 83a€mMo0ii, WO He 3a8xHCOU € OOUINbHUM
y pobomomexniyi. Tomy mepmocpaiunuii nioxio € nepcneKMusHUM, OCKLIbKU OA€ 3MO2Y 8USHAYAMU MUN
Mamepiany 3a 11020 peaKyicro Ha HaA2PIBaAHHSA MA OXONO0NCEHHS.

Y pobomi onucano excnepumeHmanbHy cucmemy, AKd BUKOPUCTNOBYE NA3EPHUL NPOMIHb O HASPIGAHHS
NoBepxHI 00 ’ekma, niciia 4020 Meniogizop peccmpye smiHy memnepamypu y waci. Ompumari memnepamypHi
npo@ini ananizylomecsa 3a 00NOMO2010 Memoodie MAUWUHHO20 HABYAHHS. BUKOHAHO MOOeno8anHs npoyecy
menionepedaui 01 HOMUpPbOX Munie mamepianie (0epego, NIACMUK, CMATb, ATOMIHIN) y cepedosuyi
COMSOL Multiphysics, wo 0ozgonuno cpopmysamu Ha84AIbHUL HAOIP OAHUX.

s kaacughikayii memnepamypHux npoginie npomecmosaHo UOMUpU  APXIMEKMypu HeUpOHHUX
mepedic: Feedforward, LSTM, Bi-LSTM ma 1D-Convolutional. Hatikpawi pe3yiemamu npooemoHcmpysana
Feedforward-mepesca, sxka oocsaena oOoni npasunbHux 6ionosioei Ha pisHi 76,6 %. BcmarnosneHo,
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wo memnepamypui npo@ini 0esaKux mMamepianie mMaromy 3HAYHY CXONHCICIb, WO YCKAAOHIOE Kaacugikayiro,
MoMY nOOANbW OOCTIONCEHHA Maromy OVmMuU CHPAMOSAMI HA POWUPEHHS HAOOPY HABUANLHUX OAHUX
ma OnmMuMi3ayiro apximexmypu mooenel.

3anpononosanuii nioxio mac wWUpoOKUl CHeKmp 3ACMOCY8AHb Y NPOMUCTIO80CMI ma poOOMomexHiyi,
de nompidona weuoxa idenmugixayia mamepianie 6e3 Qisuunoco Kowmaxmy. Aemomamuzosana cucmema
Kaacughikayii. mamepianie Ha OCHOBI MeMNEPAMYpHUX npo@inie Mmodxce RNiOBUWUMU eDEeKMUBHICTD
MEXHON0TUHUX NPOYECi8, NOKpawumy 6e3nexy SUpoOHUYMea ma po3suUlUpumu MONCIUBOCHI ABMOHOMHUX
POOOMU3068AHUX KOMNTIEKCIG.

Knwuogi cnosa: xnacugpikayiss mamepianie, nasepna mepmozpagis, mauwiunHe HAGUAHHA, HEUPOHHI
Mepedici.
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